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SEPARATION AND PURIFICATION METHODS, 17(2), 141-154 (1988) 

I O N  SEPARATION BY CHARGE-MOSAIC MEMBRANE SYSTEM 

Manabu Igawa 

F a c u l t y  of  E n g i n e e r i n g ,  Kanagawa U n i v e r s i t y ,  

Rokkakubashi ,  Kanagawa-ku, Yokohama 221, J a p a n  

ABSTRACT 

Macromosaic ce l l  and n e u t r a l i z a t i o n  d i a l y s i s  are new s e p a r a t i o n  

methods and t h e y  are c a l l e d  cha rge -mosa ic  membrane s y s t e m s  because  

t h e y  i n v o l v e  a p a i r  o r  p a i r s  o f  a c a t i o n -  and a n  anion-exchange 

membrane. 

p e r m e a b i l i t y  o f  i o n s  across t h e  membrane is  ve ry  h i g h  i n  t he  s y s t e m  

w i t h o u t  any  e x t e r n a l  d r i v i n g  f o r c e  o t h e r  t h a n  a c o n c e n t r a t i o n  

g r a d i e n t .  The s y s t e m  c a n  be used f o r  d e i o n i z a t i o n ,  t h e  s e p a r a t i o n  

o f  e l e c t r o l y t e s  f rom n o n e l e c t r o l y t e s ,  and o t h e r  purposes .  The 

t r a n s p o r t  rates can  be p r e d i c t e d  on t h e  b a s i s  of a c i r c u l a t i n g  

c u r r e n t  i n  t h e  macromosaic c e l l  or Donnan d i a l y s i s  i n  t h e  

n e u t r a l i z a t i o n  d i a l y s i s .  

They are v e r y  s i m p l e  and e a s y  t o  be c o n s t r u c t e d  and t h e  

I. INTRODUCTION 

1 A charge-mosaic  membrane proposed by S o l l n e r  i n  1932 is  

composed of  ca t ion -exchange  p a r t s  and anion-exchange p a r t s  and t h e  

s a l t  p e r m e a b i l i t y  across t h e  membrane is e x t r e m e l y  high.  When sa l t  

s o l u t i o n  and p u r e  water are s e p a r a t e d  t o  e a c h  o t h e r  by a c a t i o n -  or 
a n  anion-exchange membrane, c o u n t e r  i o n s  are pe rmea ted  t h r o u g h  a n  

ion-exchange membrane under  a c o n c e n t r a t i o n  g r a d i e n t  b u t  o n l y  a 

trace amount d i f f u s e s  because  t h e  d i f f u s i o n  of  c a t i o n s  a l o n e  or 
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142 IGAWA 

a n i o n s  a l o n e  breaks  an electrical n e u t r a l  c o n d i t i o n  a t  t h e  membrane 

s u r f a c e  and a n  electric f i e l d  is formed t o  t r a n s p o r t  t h e  i o n s  

backward. 

anion-exchange p a r t s ,  c a t i o n s  are permeated through t h e  c a t i o n -  

exchange p a r t s ,  and t h e  c a t i o n s  and a n i o n s  approach t o  each o t h e r  t o  
2 form a c i r c u l a t i n g  c u r r e n t  . 

t h i s  c i r c u l a t i n g  c u r r e n t  i n  a mosaic membrane and t h e  l a r g e  s a l t  
f l u x  c a u s e s  t h e  water f l u x  i n  t h e  same d i r e c t i o n ,  which is c a l l e d  

n e g a t i v e  osmosis ,  w h i l e  osmosis occurs  i n  a u s u a l  membrane and water 
is t r a n s p o r t e d  across t h e  membrane from t h e  d i l u t e d  s o l u t i o n  t o  t h e  

concent ra ted  so lu t ion .  

through t h e  mosaic membrane under a p r e s s u r e  g r a d i e n t  t o  t h e  

c o n t r a s t  of  r e v e r s e  osmosis ,  where salts  are r e j e c t e d  by a membrane. 

The sa l t  enrichment  by a mosaic membrane is c a l l e d  p i e z o d i a l y s i s 3  

and it is more e f f e c t i v e  than r e v e r s e  osmosis because t h e  minor 

components, salts  are enr iched  i n  t h e  permeated s o l u t i o n  and t h e  

source  phase s o l u t i o n  is deionized. 
4 e f f e c t i v e  t o  s e p a r a t e  e l e c t r o l y t e s  from n o n e l e c t r o l y t e s  , 

I n  a mosaic membrane, a n i o n s  are permeated through t h e  

The i o n  t r a n s p o r t  is  f a c i l i t a t e d  by 

S a l t s  can  be enr iched  by t h e  permeat ion 

Mosaic membranes are a l s o  

Many charge-mosaic membranes have been developed but  t h e r e  have 

been no mosaic membranes w i t h  s u f f i c i e n t  permeat ion c h a r a c t e r i s t i c s  

a l though many years have passed s i n c e  t h e  f i r s t  p r o p o s i t i o n  by 

Sol lner ' .  Weinstein e t  al. r e p o r t e d  a mosaic membrane where a 

s i n g l e  l a y e r  of a l t e r n a t i n g  c a t i o n -  and anion-exchange beads were 
embedded i n  an i n e r t  s i l i c o n e  rubber  f i l m  and n e g a t i v e  osmosis  

through t h e  membrane'. Many o t h e r  methods have been repor ted  t o  
prepare  mosaic membranes but  they  are n o t  s u f f i c i e n t  because it is  

very d i f f i c u l t  to  make a cation-exchange p a r t  i n  t h e  v i c i n i t y  of  an 

anion-exchange p a r t  and v i c e  versa. Fuj imoto e t  al., however, 

r e p o r t e d  r e c e n t l y  a very good mosaic membrane prepared from 

pentablock co-polymer and it is very e f f e c t i v e  i n  both p i e z o d i a l y s i s  

and t h e  s e p a r a t i o n  between e l e c t r o l y t e s  and n o n e l e ~ t r o l y t e s ~ .  

My group a l s o  prepared a mosaic membrane and r e p o r t e d  t h e  
s e l e c t i v e  p e r m e a b i l i t y  of  metal i o n s  but  t h e  n e g a t i v e  osmosis  
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CHARGE-MOSAIC MEMBRANE SYSTEM 143 

6 through t h e  membrane was very small . 
mosaic membranes, however, a charge-mosaic membrane s y s t e m  was 
c o n s t r u c t e d  w i t h  a cation-exchange membrane, an anion-exchange 

membrane, t h r e e  compartments s e p a r a t e d  by t h e  membranes, and two 

probe e l e c t r o d e s  and a c i r c u l a t i n g  c u r r e n t  was determined i n  t h e  

cell as a model of  a charge-mosaic membrane . 
fundamental  characteristics o f  mosaic membranes w i t h  a mosaic 

8 membrane s y s t e m  . 
charge-mosaic membrane sys t em.  

exchange membrane, a cation-exchange membrane, and two s o l u t i o n  

compartments s e p a r a t e d  by t h e  membranes t o  each o t h e r  and t h e  

c i r c u l a t i n g  c u r r e n t  f l o w s  perpendicular ly  t o  t h e  membranes9. 

cal l  t h e  system a macromosaic cell. 
e l e c t r o d i a l y s i s  cel l  except  t h a t  t h e  c u r r e n t  is  s h o r t - c i r c u i t e d  by a 

sal t  s o l u t i o n .  T h i s  cell is very s i m p l e  but  t h e  c i r c u l a t i n g  c u r r e n t  

is as h igh  as t h a t  of a mosaic membrane. We developed later a n o t h e r  
new method c a l l e d  n e u t r a l i z a t i o n  d i a l y s i s  on t h e  b a s i s  of Donnan 

d i a l y s i s ” ,  which needs a p a i r  of ion-exchange membranes and a cel l  

similar t o  a macromosaic c e l l  and is a very e f f e c t i v e  d e i o n i z a t i o n  

method 

I n  t h e  e a r l y  work o f  charge- 

7 S o l l n e r  also s t u d i e d  

Then, t h e  a u t h o r s  began t o  develop a n  e f f e c t i v e  

The system is composed of  a n  anion-  

We 

The cell  is the same as t h e  

11 

Those methods need not  s p e c i a l  membranes but  c o m m e r c i a l i o n -  

exchange membranes, which are Selemion AMV and CMV (Asahi Glass Co. 

Ltd.) i n  t h i s  paper, and are very s i m p l e  b u t  t h e i r  e f f i c i e n c i e s  are 
very high. These s y s t e m s  w i l l  have many a p p l i c a t i o n s .  I n  t h i s  

review,  t h e  p r i n c i p l e s  and t h e  a p p l i c a t i o n s  w i l l  be demonstrated. 

11. MACROMOSAIC CELL 

C i r c u l a t i n g  C u r r e n t  Genera t ion  i n  a Macromosaic Cell  
F igure  1 shows the a p p a r a t u s  of  macromosaic ce l l  and t h e  scheme 

9 of  c i r c u l a t i n g  c u r r e n t  g e n e r a t i o n  . 
by an e x t e r n a l  salt s o l u t i o n ,  s o u r c e  phase s o l u t i o n  i n  a beaker, and 

c a t i o n s  and a n i o n s  are permeated across t h e  cation-exchange membrane 

The c u r r e n t  i s  s h o r t - c i r c u i t e d  
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144 IGAWA 

FIGURE 1 

Macromosaic ce l l  and s c h e m a t i c  c i r c u l a t i n g  c u r r e n t  (Ref. 9): (---), 

s c h e m a t i c  c i r c u l a t i n g  c u r r e n t ;  C, cat ion-exchange membrane; A, 

anion-exchange membrane; cb, c a t i o n ;  e,  an ion ;  S, stirrer c h i p ;  T. 
T e f l o n  tub ing ;  R1 and R2 ,  s i l i c o n e  rubbe r  s h e e t s ;  F, a c r y l i c  r e s i n  
frame. 

and t h e  anion-exchange membrane, r e s p e c t i v e l y  and a c i r c u l a t i n g  

c u r r e n t  is gene ra t ed  i n  t h i s  cell. The d r i v i n g  f o r c e  o f  t h e  i o n  

t r a n s p o r t  is t h e  membrane p o t e n t i a l  g e n e r a t e d  by t h e  c o n c e n t r a t i o n  

d i f f e r e n c e  across a membrane. A t h i n  s i l i c o n e  rubbe r  s h e e t  (3 m m )  
w i t h  a pore  of  38 m m  d i a m e t e r  is i n t e r p o s e d  between a c a t i o n -  and a n  

anion-exchange membrane and t h e y  are t i g h t e n e d  t o  e a c h  o t h e r  w i t h  

a c r y l i c  r e s i n  frames. 
beaker ,  which is s t i r r e d  w i t h  a stirrer. The r e c e i v i n g  phase 

T h i s  c e l l  is immersed i n  a sal t  s o l u t i o n  i n  a 
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CHARGE-MOSAIC MEMBRANE SYSTEM 145 

s o l u t i o n  i n  t h e  compar tmen t  between two membranes is  pumped from a 
r e s e r v o i r .  

I o n  f l u x ,  JI i n  t h i s  macromosaic  cel l  can be  c a l c u l a t e d  f rom 

t h e  c i r c u l a t i n g  c u r r e n t ,  1, which  is d e f i n e d  as t h e  sum o f  t h e  

membrane p o t e n t i a l s  d i v i d e d  by t h e  sum o f  t h e  r e s i s t a n c e  o f  t h e  

ce l l ,  Rt as shown i n  t h e  f o l l o w i n g  e q u a t i o n .  

where F i s  t h e  Fa raday  c o n s t a n t ,  n is  t h e  v a l e n c e  o f  t h e  i o n ,  R i s  

t h e  g a s  c o n s t a n t ,  T is t h e  a b s o l u t e  t e m p e r a t u r e ,  Cs and Cr are the 

c o n c e n t r a t i o n  of  t h e  s o u r c e  phase  s o l u t i o n  and t h a t  o f  t h e  r e c e i v i n g  

phase  s o l u t i o n ,  r e s p e c t i v e l y .  The r e s i s t a n c e  of  e a c h  membrane 

r e s i s t a n c e  i s  between 2.0 and 3.5 ohm'cm and  t h e  r e s i s t a n c e  i n  t h e  

ce l l  is p r a c t i c a l l y  e q u a l  t o  t h e  sum o f  t h e  s o l u t i o n  r e s i s t a n c e s ,  

which c a n  be c a l c u l a t e d  f rom t h e  mola r  c o n d u c t i v i t y ,  t h e  salt  

c o n c e n t r a t i o n ,  and t h e  t h i c k n e s s  o f  t h e  compartment .  

2 

I o n  T r a n s p o r t  i n  a Macromosaic Cell 

F i g u r e  2 shows t h e  measured v a l u e s  and t h e  c a l c u l a t e d  c u r v e  o f  

t h e  i o n  f l u x  i n  t h e  cel l  as t h e  f u n c t i o n  of t h e  r e c e i v i n g  phase  

c o n c e n t r a t i o n ,  when t h e  c o n c e n t r a t i o n  of  t h e  s o u r c e  phase  is 

m a i n t a i n e d  c o n s t a n t .  I n  t h e  low c o n c e n t r a t i o n  r a n g e ,  t h e  f l u x  

i n c r e a s e s  w i t h  t h e  i n c r e a s e  o f  t h e  c o n c e n t r a t i o n  because  of t h e  

d e c r e a s e  o f  t he  r e s i s t a n c e  o f  t h e  r e c e i v i n g  phase  s o l u t i o n .  

c o n c e n t r a t i o n  r a n g e  h i g h e r  t h a n  0.01 mol/L, however ,  t h e  f l u x  

d e c r e a s e s  w i th  t h e  c o n c e n t r a t i o n  because  of t h e  d e c r e a s e  o f  t h e  

membrane p o t e n t i a l  which is t h e  d r i v i n g  f o r c e .  

i n c r e a s e s  w i t h  t h e  d e c r e a s e  o f  t h e  t h i c k n e s s  of t h e  r e c e i v i n g  phase  

compar tmen t  because  o f  t h e  d e c r e a s e  o f  t h e  s o l u t i o n  r e s i s t a n c e  i n  

t h e  r e c e i v i n g  phase  compartment .  

c i r c u l a t i n g - c u r r e n t  factor,  A which  is d e f i n e d  as f o l l o w s .  

I n  t h e  

The i o n  f l u x  

The f i g u r e  a l so  show a 
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Receiving phase concentration (md IL 1 

FIGURE 2 
E f f e c t  o f  r ece iv ing -phase  c o n c e n t r a t i o n  on i o n  f l u x  and  c i r c u l a t i n g  

c u r r e n t  f a c t o r  i n  macromosaic cell  (Ref. 9): ( 0 ) .  obse rved  v a l u e ;  

(-), c a l c u l a t e d  va lue ;  a,  t h i c k n e s s  of r e c e i v i n g  phase  

compartment;  r e c e i v i n g  phase,  KC1 soln.(50 mL); s o u r c e  phase,  0.1 M 
K C 1  s o l n . ( l  L). 

where JM is t h e  i o n  f l u x  th rough  a membrane i n  t h e  ce l l  and J A  and  

Jc are t h e  sa l t  f l u x  th rough  a n  anion-  and  a cat ion-exchange 
membrane. The maximum v a l u e  o b t a i n e d  i n  t h i s  e x p e r i m e n t a l  c o n d i t i o n  

is 31 and t h i s  v a l u e  is as h i g h  as t h a t  o b t a i n e d  by a r e p r e s e n t a t i v e  
2 mosaic  membrane . 

The t r a n s p o r t  e f f i c i e n c y  is h i g h e r  i n  a m u l t i p l e  mosaic  c e l l  

t h a n  i n  a s i n g l e  t y p e  cel l  and t h e  d e i o n i z a t i o n  i s  p o s s i b l e  i n  t h e  

m u l t i p l e  cell.  

when compartment  A, B, and C c o n t a i n  t h e  s o l u t i o n s  o f  a same 

c o n c e n t r a t i o n  bu t  t h e r e  are c o n c e n t r a t i o n  d i f f e r e n c e s  between o t h e r  

compartments .  

F i g u r e  3 show t h e  i o n  t r a n s p o r t  t h rough  t h e  ce l l  

The i o n s  i n  compartment  B are pe rmea ted  t o  o t h e r  
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CHARGE-MOSAIC MEMBRANE SYSTEM 147 

Time (h) 

FIGURE 3 

Uphi l l  t r a n s p o r t  of s a l t  i n  m u l t i p l e  macromosaic ce l l  (Ref. 9): 
compartment A ,  B, and C, 0.01 M KC1 soln.(50 mL); compartment D and 

F, 0.1 M KC1 s o l n . ( l  L); c o m p a r t m e n t  E ,  0.01 M KC1 soln.(0.5 L). 

compartment a g a i n s t  t h e  c o n c e n t r a t i o n  g r a d i e n t  and t h e  s o l u t i o n  i s  

de ionized  a l though t h e  i n i t i a l  c o n c e n t r a t i o n  is t h e  same t o  t h o s e  i n  

t h e  a d j a c e n t  compartments. The i o n  f l u x  c o n t i n u e s  t o  f low u n t i l  t h e  

sum of t h e  membrane p o t e n t i a l  becomes zero  as fol lows.  

where EXY is  t h e  membrane p o t e n t i a l  between compartment X and 

compartment Y. 
such as sucrose  is  very low and it is p o s s i b l e  t o  s e p a r a t e  

n o n e l e c t r o l y t e s  from electrolytes i n  t h e  cell. 

Furthermore,  t h e  d i f f u s i o n  f l u x  of  n o n e l e c t r o l y t e s  

111. NEUTRALIZATION DIALYSIS 

P r i n c i p l e  of  N e u t r a l i z a t i o n  D i a l y s i s  

N e u t r a l i z a t i o n  d i a l y s i s 1 1  is  developed r e c e n t l y  from 

macromosaic cell. Its p r i n c i p l e  is  based on Donnan d i a l y s i s "  and 
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HA 
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FIGURE 4 

B OH 

OH- 

B 

S c h e m a t i c  i o n  t r a n s p o r t  i n  n e u t r a l i z a t i o n  d i a l y s i s  (Ref. 11): a, 

anion-exchange membrane; c, ca t ion -exchange  membrane: A,  a c i d  
s o l u t i o n  compartment;  D, d e i o n i z a t i o n  compartment:  B, b a s e  s o l u t i o n  

compartment.  

t h e  d e i o n i z a t i o n  scheme is shown i n  F i g u r e  4 .  The salt  s o l u t i o n  i n  

t h e  d e i o n i z a t i o n  compar tmen t  is s e p a r a t e d  from a n  a c i d  s o l u t i o n  and 

a b a s e  s o l u t i o n  by a ca t ion -exchange  membrane and an  anion-exchange 

membrane, r e s p e c t i v e l y .  
the a n i o n s  are  exchanged w i t h  hydrox ide  i o n  a c r o s s  e a c h  membrane. 

The p r o t o n  reacts w i t h  t h e  hydrox ide  i o n  t o  y i e l d  water m o l e c u l e  

j u s t  a f t e r  t h e i r  p e r m e a t i o n s  t o  t h e  d e i o n i z a t i o n  compartment  and t h e  

d e i o n i z a t i o n  and t h e  n e u t r a l i z a t i o n  o c c u r  s i m u l t a n e o u s l y  i n  t h e  

compartment .  I n  t h i s  method, the l a r g e  c o n c e n t r a t i o n  d i f f e r e n c e s  of  

p r o t o n  and hydrox ide  i o n  caused  by t h e  n e u t r a l i z a t i o n  r e a c t i o n  are 
t h e  d r i v i n g  force of t h e  i o n  t r a n s p o r t  and as a consequence t h i s  

method is c a l l e d  as n e u t r a l i z a t i o n  d i a l y s i s .  The ce l l  of t h i s  
method r e s e m b l e s  t o  a macromosaic ce l l  e x c e p t  t h a t  t h e  ce l l  i n v o l v e s  

t h r e e  compartments .  

Dasgupta  e t  al. was a l s o  e f f e c t i v e  f o r  d e i o n i z a t i o n  a l t h o u g h  it was 

deve loped  f o r  t h e  membrane s u p p r e s s o r s  f o r  i o n  chromatography12. 
ion-exchange membrane t u b e  was i n s e r t e d  i n s i d e  a n o t h e r  ion-exchange 

membrane t u b e  and a salt  s o l u t i o n  was d e i o n i z e d  between t h e  t u b e s  on 
t h e  same b a s i s  when a n  anion-exchange membrane t u b e  was i n s e r t e d  

i n s i d e  a ca t ion -exchange  membrane tube.  

The c a t i o n s  are exchanged w i t h  p r o t o n  and 

A d u a l  membrane t u b e  method proposed by 

An 
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CHARGE-MOSAIC MEMBRANE SYSTEM 149 

D e i o n i z a t i o n  by N e u t r a l i z a t i o n  D i a l y s i s  

The d e i o n i z a t i o n  of u n i v a l e n t  i o n s  by n e u t r a l i z a t i o n  d i a l y s i s  

c a n  be e x p l a i n e d  q u a n t i t a t i v e l y  by t h e  c o n c e p t  of Donnan e q u i l i b r i u m  
10 across a membrane . 

where  D, A, and B show d e i o n i z a t i o n  compar tmen t ,  a c i d  s o l u t i o n  

compar tmen t ,  and b a s e  s o l u t i o n  compartment ,  r e s p e c t i v e l y .  The 

e q u i l i b r a t e d  c o n c e n t r a t i o n  o f  metal i o n s  i n  t h e  d e i o n i z a t i o n  

compar tmen t  c a n  be  c a l c u l a t e d  from b o t h  t h e s e  e q u a t i o n s  and  t h e  

material b a l a n c e  as follows. 

where t h e  i n i t i a l  c o n c e n t r a t i o n  and t h e  volume of t h e  sa l t  s o l u t i o n  

are Co and V, r e s p e c t i v e l y  and t h e  volume and t h e  i n i t i a l  

c o n c e n t r a t i o n  o f  t h e  a c i d  s o l u t i o n  is  assumed t o  b e  e q u a l  t o  t h o s e  

of  t h e  b a s e  s o l u t i o n .  

hydrox ide  i o n ,  t h e  c o n c e n t r a t i o n  of p r o t o n  i n  d e i o n i z a t i o n  

compar tmen t  a p p r o a c h e s  t o  

c o n c e n t r a t i o n  i n  t h e  d e i o n i z a t i o n  compar tmen t  becomes v e r y  small. 

I n  t h e  a c t u a l  cell ,  however,  t h e  p r o t o n  f l u x  is n o t  t h e  same as t h e  

f l u x  o f  hydrox ide  i o n  and t h e  l e a k  of co-ion t h r o u g h  ion-exchange 

membranes is  n o t  n e g l i g i b l e .  

I f  t h e  f l u x  of p r o t o n  is  e q u a l  t o  t h a t  o f  

mol/L and t h e  e q u i l i b r a t e d  s a l t  

F i g u r e  5 show t h e  r e s u l t  of  d e i o n i z a t i o n .  A p u r e  water w i t h  1 

Mohm'cm s p e c i f i c  r e s i s t a n c e  c o u l d  b e  a t t a i n e d  i n  1 hour.  The 
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FIGURE 5 
Deioniza t ion  by n e u t r a l i z a t i o n  d i a l y s i s  (Ref. 11): compartment A, 
0.01 M H2S04(1 L); compartment B, 0.01 M Ca(OH)2(1 L); compartment 

D, 0.001 M KCl(75 mL); membrane area,  2 x 10 cm2. 

membrane i n  t h e  ce l l  was r e c t a n g u l a r  and t h e  t h i c k n e s s  of t h e  
compartment was 0.5 mm i n  t h i s  experiment. 

can be expressed by t h e  f l u x  of a n  u n i v a l e n t  c a t i o n ,  JM as fo l lows .  

The d e i o n i z a t i o n  speed 

1 1 

where Cex is t h e  i o n  exchange c a p a c i t y ,  P is  t h e  membrane 

p e r m e a b i l i t y ,  K is  t h e  s e l e c t i v e  i o n  exchange f a c t o r  of a metal i o n  
t o  proton,  C is an i o n  concent ra t ion ,  and H and M are proton and 

metal ion,  r e s p e c t i v e l y .  It is obvious from t h i s  equat ion  t h a t  
d e i o n i z a t i o n  f l u x  decreased w i t h  t h e  i n c r e a s e  of t h e  s a l t  

c o n c e n t r a t i o n  i n  t h e  a c i d  and t h e  base s o l u t i o n s  but  t h e  up-h i l l  

t r a n s p o r t  is poss ib le .  The s o l u t i o n  pH was s h i f t e d  t o  be low i n  

d e i o n i z a t i o n  compartment because t h e  proton f l u x  was h igher  than  t h e  
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Ti mc/mln 

FIGURE 6 
Separa t ion  of potassium c h l o r i d e  from methyl  a l c o h o l  (Ref. 11): 

compartment A, 0.01 M H2S04(1 L); compartment B, 0.01 M Ca(OH)2(1 

L); compartment D, 0.1 M methyl  a l c o h o l  + 0.01 M KC1 aq. soln.(100 

mL); membrane area, 2 x 10 cm2- 

hydroxide i o n  f l u x  and it is one of t h e  causes  of t h e  low s p e c i f i c  

r e s i s t a n c e  of t h e  pure water a t t a i n e d  by t h i s  method. The 

d i f f e r e n c e  between f l u x e s  of t h e  proton and hydroxide i o n  w a s  small 
13 i n  t h e  m u l t i p l e  ce l l  of  n e u t r a l i z a t i o n  d i a l y s i s  . 

An ion-exchange process  w i t h  ion-exchange r e s i n s  is  very  

i m p o r t a n t  i n  t h e  p r e p a r a t i o n  of a pure or a super  pure  water. 

exchange r e s i n s  need, however, i n t e r m i t t e n t  r e g e n e r a t i o n  and t h e  

contaminat ion  o c c u r s  i n  t h e  r e g e n e r a t i o n  process. 

d i a l y s i s  is a cont inuous  d e i o n i z a t i o n  process  and is  f r e e  from t h e  

contaminat ion  i n  t h e  r e g e n e r a t i o n  process  because t h e  r e g e n e r a t i o n  

process  is e q u a l  t o  t h e  d e i o n i z a t i o n  process  i n  t h i s  method. 

Ion- 

N e u t r a l i z a t i o n  

F igure  6 shows t h e  s e p a r a t i o n  of n o n e l e c t r o l y t e s  from 

e l e c t r o l y t e s  i n  t h e  mixed aqueous s o l u t i o n  of  potassium c h l o r i d e  and 

methanol, 

used i n  t h e  p l a c e  of d i a l y s i s  w i t h  a d i a l y s i s  membrane. 

The s e p a r a t i o n  is  very e f f e c t i v e  and t h i s  method can be 
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FIGURE 7 

Formaldehyde and S(1V) t r a n s p o r t  through anion-exchange membrane: 0 ,  

HCHO; 6 ,  S(1V); compartment B, 0.001 M NaOH; compartment A ,  0.001 M 
HC1; compartment D, 0,001 M HCHO, 0,001 M NaHS03, and 0.0001 M HC1; 

membrane area, 7.7 cm2* 

Active Transpor t  of  Formaldehyde through an Anion-Exchange Membrane 

v i a  t h e  Formation of B i s u l f i t e  Adduct 

N e u t r a l i z a t i o n  w i l l  be u s e f u l  i n  many f i e l d s .  There have been 

many papers  repor ted  on t h e  up-h i l l  and s e l e c t i v e  t r a n s p o r t  of  

i n o r g a n i c  i o n s  and amino a c i d s  w i t h  t h e  coupled counter - t ranspor t  of 
proton o r  hydroxide i o n  a c r o s s  a l i q u i d  m e ~ n b r a n e l ~ * ~ ~ .  The s o l u t i o n  
pH changes i n  t h e  s y s t e m  and t h e  e f f i c i e n c y  decreases w i t h  time f o r  

t h e  pH change. 
another  ion-exchange membrane i n  a n e u t r a l i z a t i o n  d i a l y s i s  ce l l ,  t h e  

pH change d e c r e a s e s  and t h e  high e f f i c i e n c y  c o n t i n u e s  f o r  a long  

time. Recent ly ,  t h e  a u t h o r s  r e p o r t e d  a new a p p l i c a t i o n  of t h i s  

method f o r  a f a c i l i t a t e d  t r a n s p o r t  of n o n e l e c t r o l y t e s  a c r o s s  an ion- 

exchange membrane . 

I f  hydroxide i o n  o r  proton is  s u p p l i e d  through 

16 
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153 CHARGE-MOSAIC MEMBRANE SYSTEM 

There  are many r e p o r t s  on a f a c i l i t a t e d  and s e l e c t i v e  t r a n s p o r t  

of i o n s  th rough  a n  a r t i f i c i a l  membrane 14,15 b u t  t h e r e  are o n l y  a few 

r e p o r t s  of t h e  s e l e c t i v e  and a c t i v e  t r a n s p o r t  of  n o n e l e c t r o l y t e s  

t h rough  a n  a r t i f i c i a l  membrane, such  as t h e  t r a n s p o r t s  of s u g a r s  

t h rough  po lyv iny l -po lypep t ide  membrane17 o r  hydrophobic  s o l u t e s  

t h rough  hydrophobic  membranes18. Formaldehyde, which is  one of  ve ry  

i m p o r t a n t  s p e c i e s  i n  env i ronmen t ,  reacts w i t h  b i s u l f i t e  i o n  t o  form 

a n  adduc t ,  hydroxymethane s u l f o n i c  a c i d  ion ,  which is  a c o n j u g a t e  
19 base  of  a s t r o n g  a c i d  . 

t r a n s p o r t e d  r a p i d l y  across a n  anion-exchange membrane as a n i o n s  w i t h  

t h e  coup led  c o u n t e r - t r a n s p o r t  o f  hydrox ide  ion.  The s t a b i l i t y  of  

t h e  a n i o n  depends s t r o n g l y  on pH and t h e  i o n  is d i s s o c i a t e d  i n  a n  

a l k a l i n e  solut ion19.  

n e u t r a l i z a t i o n  d i a l y s i s  ce l l  and t h e  f l u x  can be ma in ta ined  

c o n s t a n t ,  too.  F i g u r e  7 show t h e  t r a n s p o r t  of  formaldehyde w i t h  

b i s u l f i t e  i o n  coupled w i t h  t h e  c o u n t e r - t r a n s p o r t  of  hydrox ide  ion. 

The t r a n s p o r t  of formaldehyde cou ld  n o t  be d e t e c t e d  i n  t h e  absence  

o f  b i s u l f i t e  i n  t h e  formaldehyde s o l u t i o n .  

a c i d  is  d i s s o c i a t e d  t o  be formaldehyde and s u l f i t e  i o n  i n  t h e  base  

s o l u t i o n  and t h e  f l u x  o f  formaldehyde is h i g h e r  t h a n  t h a t  of 

b i s u l f i t e .  B i s u l f i t e  i o n  is  exchanged w i t h  t h e  i o n  i n  t h e  membrane 

and is  t r a n s p o r t e d  w i t h  t h e  coupled c o u n t e r - t r a n s p o r t  of hydrox ide  

i o n  w h i l e  formaldehyde rea?ts w i t h  b i s u l f i t e  i o n  i n  t h e  membrane and 

is  t r a n s p o r t e d  by hopping from one b i s u l f i t e  i o n  t o  t h e  o t h e r  under  

i ts  c o n c e n t r a t i o n  g r a d i e n t .  

e l e c t r o l y t e s  and o r g a n i c  n o n e l e c t r o l y t e s  t o  form e l e c t r o l y t e s 2 '  and 

t h i s  t r a n s p o r t  mechanism may be a n  i m p o r t a n t  r o l e  i n  biomembranes. 

A s  a consequence formaldehyde can be 

The s o l u t i o n  pH is c o n s t a n t  i n  t h e  

Hydroxymethane s u l f o n i c  

The re  are many r e a c t i o n s  between 

CONCLUSION 

Charge-mosaic membrane sys t em composed o f  a p a i r  o r  p a i r s  of  a n  

anion-exchange membrane and a cat ion-exchange membrane is v e r y  

s i m p l e  and e a s y  t o  be c o n s t r u c t e d  and t h e r e  w i l l  be many 

a p p l i c a t i o n s  of  i t  o t h e r  t h a n  t h o s e  d e s c r i b e d  above. 
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